
Abstract. We present numerical simulations of the
three-variable model of the Belousov–Zhabotinsky re-
action developed by Gyorgyi and Field, where chaos can
occur in the free-running system. As the rate of in-flow
in the continuous-flow stirred-tank reactor is controlled
by the concentration of one of the reactor species
through a feedback loop, we find two simple ways to
bring the chaotic behavior to periodic behavior. One is
to modify the feedback strength without time delay in
the feedback loop, and the other is to modify the delay
time of the feedback at constant feedback strength. The
possible mechanisms for the two ways are discussed.
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Introduction

Chaotic systems, characterized by extreme sensitivity to
tiny perturbations, are now known to exist widely in
nature. Among them, chemical chaotic systems have
attracted intensive attention because they are easily
realized both in experiments and in numerical simula-
tions and they are closely related to biological processes
in life. With the development of chaos-control techni-
ques, the control of chemical chaos has also been an
important topic [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In many
cases, there are two main purposes for controlling chaos.
One is to eliminate chaos, and the other is to bring about
a desired and well-predictable periodic behavior.

Many methods have been successfully used to control
chaos [12, 13], and these methods can be mainly classified
as feedback [14, 15, 16, 17, 18, 19, 20] and nonfeedback
[21, 22, 23, 24, 25]. Ott–Grebogi–Yorke(OGY) [14] and

Pyragas [15] are two typical feedback methods, which
both utilize small perturbations to stabilize the unstable
periodic orbits embedded in chaos. OGY is a discon-
tinuous feedback method, which requires a simultaneous
on-line computer analysis to determinewhen the feedback
signal must perturb the system. OGY has been used to
control chemical reactions both in simulations and in
experiments [1, 2, 3]. The Pyragas method is a continuous
one, which continuously applies control signals to the
system by a feedback function, F(s,s0)=K[y(s)s0))y(s)],
in which s is a time-dependent measurement of the system
state, s0 the delay time, andK the feedback strength. It has
been used to stabilize the unstable periodic orbits in the
Belousov–Zhabotinsky (BZ) reaction [4] and the perox-
idase–oxidase reaction [5]. Recently, the self-adaptive
delayed feedback controlling scheme [16] and the linear
self-interacting feedback controlling scheme [18] have
both been successfully used to control chaos in the BZ
reaction [6, 7, 8]. In addition, the resonant chaos control
method [22], which is a typical nonfeedback method, has
also been proved to be useful in the control of chaos in the
BZ reactions [9, 10, 11]. The resonant chaos control
method is implemented by adding external periodic
perturbations to the chaotic system.

Owing to the requirements for engineering, especially
in communication devices, chaos controllers must be
designed for fast chaotic systems [19, 20]. However, in
the area of exploring some real-world chaotic systems
with self-regulation behavior, such as chemical and
biological systems, this requirement is not necessary
since the effect of delay is often significant in such sys-
tems. Furthermore, feedback is very common in these
real-world chaotic systems. Thus, exploring chaos con-
trolling under a feedback loop with delay might be an
important key to the rich phenomena of self-regulation
in the real-world chaotic systems. For these reasons, in
this work we use a simple continuous delayed feedback
function, F(s,s0)=K[y(s)s0))y0] [26, 27, 28, 29], in
which the only difference from the Pyragas feedback
function is that the reference concentration, y0, is held
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constant, and we find out in a complex chemical chaotic
system, i.e., the BZ reaction, whether this simple linear
feedback loop could serve to bring chaos into order
when the time delay exists or not. It is well known that in
an automated thermostat, a simple linear system, this
feedback loop can bring about a stable temperature
without a time delay in the feedback and an oscillating
temperature with time delay.

The BZ reaction [30, 31, 32, 33] is the best-studied ex-
ample of an oscillatory chemical system, in which Ce(IV)/
Ce(III) catalyses the oxidation and bromination of
CH2(COOH)2 (malonic acid) by BrO3

) in H2SO4. If the
reaction is carried out in a continuous-flow stirred-tank
reactor, the flow rate of the reactants into the tank ulti-
mately determines the system’s dynamic behavior, such as
steady-steady, periodic, and chaotic behavior. As such,
the flow rate is our control parameter for the system. In
order to obtain good numerical simulation results, we
chose the three-variable model of the BZ reaction devel-
oped by Gyorgyi and Field [34] because of its excellent
accounting for rich dynamic behavior including chaos in
the BZ reacting system. When the perturbation term F
(s,s0) is added to the control parameter, we canmodify the
flow rate in two simple ways: by adjusting the feedback
strength without time delay; and by adjusting the delay
time at fixed feedback strength. The present work shows
that the transitions from chaotic to periodic oscillations
are obtained in both ways.

The model system

The chemical scheme of the BZ reaction model developed
byGyorgyi andField is shown inTable 1.Considering the
reaction rates and flow rate, the dynamic evolution
equations of the studied system can be written as

dX=dt ¼ �k1HYX þ k2AH 2Y � 2k3X 2

þ 0:5k4A0:5H1:5 C � Zð ÞX 0:5 � 0:5k5XZ � kfX ;

dY =dt ¼ �k1HYX � k2AH 2Y þ ak6ZV � kfY ;

dZ=dt ¼ k4A0:5H1:5 C � Zð ÞX 0:5

� k5XZ � ak6ZV � bk7MZ � kfZ

dV =dt ¼ 2k1HXY þ k2AH 2Y þ k3X 2 � ak6ZV � kfV ; ð1Þ
where kf is the flow rate.

If one variable changes on a faster timescale than the
others in several reaction steps, a quasi-steady-state
approximation could be used, i. e. d(variable)/dt=0. In
this model, X and Y are both such kinds of variable, but
we only let dY/dt=0 since it will make the model simpler
and work better [34]. Thus, Y is eliminated in Eq. (1) by
calculating ~yy as the root of dY/dt=0:

~yy ¼ ak6Z0V0zv
�

k1HX0xþ k2AH2 þ kf
� �� ��

Y0:

Until now, the dimension of Eq. (1) has been
decreased to 3. Then, the equations reduced are non-
dimensionalized by

s � t=T0; x � X=X0; z � Z=Z0; v � V =V0

with the scaling [34]

T0 ¼ 10k2AHCð Þ�1; X0 ¼ k2AH2
�

k5; Y0 ¼ 4k2AH 2=k5;

Z0 ¼ CA=ð40MÞ; V0 ¼ 4AHC=M2:

Finally, the dimensionless rate equations become

dx=ds ¼ T0½�k1HY0x~yy þ k2AH 2Y0=X0~yy

�2K3X0x2 þ 0:5k4A0:5H1:5X�0:50 ðC � Z0zÞx0:5

�0:5k5Z0xz� kfx�;
dz=ds ¼ T0½k4A0:5H1:5X 0:5

0 ðC=Z0 � zÞx0:5

�k5X0xz� ak6V0zv� bk7Mz� kfz�;
dv=ds ¼ T0½2k1HX0Y0=V0x~yy þ k2AH 2Y0=V0~yy

þk3X 2
0 =V0x2 � ak6Z0zv� kfv�:

ð2Þ

See Ref. [34] for more details about the model.
Equation (2) is solved numerically using the Gear

method. The parameters used in Eq. (2) are listed in
Table 2. The bifurcation diagram for Eq. (2) with the
variation of kf is shown in Fig. 1 and agrees with the
result of Gyorgyi and Field [34]. Steady states appear at
kf £ 2.350 ·10)4 s)1(not shown in Fig. 1), and small-
amplitude, sinusoidal period-1 oscillations develop as kf
is increased. The sequence of period-doubling bifurca-
tions follows and results in chaos at kf � 3.230 ·10)4 s–1.
Several other periodic and chaotic windows appear
as kf is increased to 4.450 ·10)4 s)1, above which the
regular period-1 oscillation appears again. For the
present study, we focus on the strange attractor at
kf0 ¼ 3:400� 10�4 s�1, which has been characterized by

Table 1. Chemical scheme of a model of the Belousov–Zhabo-
tinsky reaction. The chemical identities of the components are
Y=Br), X=HBrO2, Z=Ce(IV), V=BrCH(COOH)2, A=BrO3

),
C=[Cetot], H=H+, M=CH2(COOH)2. The concentration of the
main reactants (A,H, and M) and the total concentration of cerium
ions (C) are fixed.

Reactions Rates(ri)

(1) Y+X+H fi 2V r1=k1HYX
(2) Y+A+2H fi V+X r2=k2AH

2Y
(3) 2X fi V r3=k3X

2

(4) 0.5X+A+H fi X+Z r4=k4A
0.5H1.5(C–Z)X0.5

(5) X+Z fi 0.5X r5=k5XZ
(6) V+Z fi Y r6=ak6ZV
(7) Z+M fi r7=bk7MZ

Table 2. Parameters used in Eq. (2) [34]

Rate constants (ki)
for reactions 1–7

Other parameters

k1=4.0 ·106 M)2 s)1 A=0.1 M,M=0.25 M,
H=0.26 M,C=8.33 ·10)4 M,

a=666.7, b=0.3478
k2=2.0 M)3 s)1

k3=3.0 ·103 M)1 s)1

k4=55.2 M)2.5 s)1

k5=7.0 ·103 M)1 s)1

k6=0.09 M)1 s)1

k7=0.23 M)1 s)1
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the Poincare surface of section, the frequency spectrum,
and the 1D return map (not shown here), and calculate
the flow rate, kf, in Eq. (2) with the following formula

kf ¼ kf0 þ F s; s0ð Þ ¼ kf0 þ K z s� s0ð Þ � z0½ �; ð3Þ

in which kf0 is a constant component, K the feedback
strength, z (s)s0) the value of z after a delay time
of s0, and z0 the constant reference value. We take z0
to be 4.50 throughout this work, which is about the
middle value between the maximum and minimum
of the oscillations for the free-running oscillator at
kf0 ¼ 3:400� 10�4 s�1.

Eliminating chaos

Case 1: Modifying the feedback strength without time
delay

In this case, there is no time delay in Eq. (3). We increase
K from 7.56 ·10)7 s)1 to 1.51 ·10)5 s)1 in steps of
7.56 ·10)7 s)1. It is found that when K=4.54 ·10)6–
6.05 ·10)6 s)1 and 1.06 ·10)5–1.51 ·10)5 s)1, the transi-
tions from chaotic to periodical oscillations occur. The
former range of K is called region 1, and the latter is
called region 2. The transitions for regions 1 and 2 are
illustrated in Fig. 2a and b, respectively. In region 1,
only period-3 oscillations are obtained, while in region 2
period-4 and period-2 oscillations are both obtained. A
point of interest is that the shapes and amplitudes for the
periodic oscillations obtained in region 1 vary a little,
while they change much in region 2, in particular, the
amplitudes have a decreasing trend with the increment

of K. Note that, in Fig. 2a, after K=6.80 ·10)6 s)1 is
switched on, the subsequent oscillations are marked by
AP, i.e., aperiodic oscillation, since the original chaos
may be destroyed by the applied perturbation.

Case 2: Modifying the delay time with constant
feedback strength

By the previous means, only a small range of values
between K=7.56 ·10)7 and 1.06 ·10)5 s)1 can serve to
eliminate chaos. The question then becomes how to use
the other values to eliminate the chaos. Consider now
that the time delay exists in Eq. (3) and modify the delay
time with K fixed to be a value between 7.56 ·10)7 and
1.06 ·10)5 s)1 except for the small range 4.54 ·10)6–

Fig. 1. Bifurcation diagram obtained from simulations based on
Eq. (2) by gradually increasing the flow rate, kf. The conditions for
these simulations are listed in Table 2. Periodic behavior is
indicated when only a few intersections are visible at a particular
kf, whereas many intersections indicate chaos. PD sequence of
period-doubling bifurcation, CH chaos regime, P2 period-2 osci-
llation, P3 period-3 oscillation, P5 period-5 oscillation. R1, R2, and
R3 denote the variation ranges of kf at K=4.54 ·10)6, 6.05 ·10)6,
and 1.06·10)5 s)1 in Eq. (3) without time delay, respectively. The
thick arrow indicates the chaos at kf=3.400 ·10)4 s)1 studied in this
work

Fig. 2a, b. Reduced concentration of Ce(IV), z, as a function of
reduced time, s, obtained from Eq. (2) for the transitions from
chaos to periodic oscillations when the system has no-delay
feedback. The arrows indicate when the control feedback is
switched on, and the numbers on the arrows show the values of
the feedback strength, K, applied. CH chaotic state, P periodic
state, AP aperiodic state. a Values of K between 4.54·10)6

and 6.05 ·10)6 s)1, and b values of K between 1.06·10)5 and
1.51·10)5 s)1 are illustrated to serve to eliminate chaos
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6.05 ·10)6 s)1. It is found that for each value of K that
we choose there exist delay times that can turn chaos
into periodicity. It is more interesting that when K is
fixed to a value between 7.56 ·10)7 and 4.54 ·10)6 s)1,
the delay times for transitions are almost symmetric, i.e.,
there exist two sets of delay time. However, when K is
increased to a value between 6.05 ·10)6and 1.06 ·10)5s)1,
this symmetry is destroyed. The former range of K, i.e.,
7.56 ·10)7–4.54 ·10)6 s)1, is called region 3; the latter
range of K, i.e., 6.05 ·10)6–1.06 ·10)5 s)1, is called
region 4. We take two values of K as examples for the
cases in regions 3 and 4, respectively. The transitions at
K=3.78 ·10)6 s)1 with adjustment of the delay time are
shown in Fig. 3a. It indicates that there are two sets
of delay time and that they are around s0=0.005 and
0.018, respectively. The transitions at K=7.56 ·10)6 s-1

are shown in Fig. 3b, but only one big set of delay time,
i.e., s0=0.013–0.018, is found. A common feature as
shown in case 1 is that the transformed periodic oscilla-

tions in region 3 change a little with s0, while those
in region 4 change significantly. It seems, however, that
richer periodic oscillations could be obtained than those
by no-delay feedback.

One may wonder why the integration time needed for
determining the dynamic behavior of the system seems
very short in Figs. 2 and 3. In fact, these figures just
illustrate the results which are obtained in the long
simulations. As shown in Figs. 2 and 3, the regular
oscillations are stabilized soon after the feedback is
switched on or changed, indicating that the system
studied responds rapidly to the perturbations.

Discussions

For case 1 we analyze the variation ranges of kf as it is
perturbed according to Eq. (3) at the values of K ran-
ging from 7.56 ·10)7 to 1.51 ·10)5 s)1, and compare
them with the bifurcation diagram of the system
without perturbations. It is found that the transitions
from chaos to periodicity in case 1 seem to be attrib-
uted to the periodic windows in the bifurcation
diagram. In Fig. 1 we plot the variation ranges of kf
at K=4.54 ·10)6, 6.05 ·10)6, and 1.06 ·10)5s)1, which
are denoted by R1, R2, and R3 respectively. When
K<4.54 ·10)6 s)1, the minima of the kf variations,
called Rm, are almost in the chaotic window, and
transitions from chaos to periodicity are not found.
When K increases to a value between 4.54 ·10)6 and
6.05 ·10)6 s)1, Rm crosses a little the period-3 window,
and transitions from chaos to periodicity occur. When
K increases from 6.05 ·10)6 s)1, Rm goes far beyond
the period-3 window and walks deep into another
chaotic region, and transitions from chaos to periodi-
city disappear. Until K‡1.06 ·10)5 s)1, as Rm walks
deep into the periodic window, transitions from chaos
to periodicity reappear. From the previous analysis, we
suppose that whether the transitions occur or not
depends on where the minima of the kf variations lie in
the bifurcation diagram. It is understandable if we
note that the minimal part of the kf variations just
corresponds to the small-amplitude oscillations of z.
And such small-amplitude oscillations can be con-
sidered as the transitional states that jump to big
oscillations. These transitional states determine when
the next big oscillation occurs. Therefore, as long as the
values of kf corresponding to transitional states lie
sufficiently in periodic windows, the periodic windows
will probably like ‘‘traps’’ pull the chaos into them.

If carefully seen, the bifurcation diagram in Fig. 1 has
a much smaller window for period-5, which is near the
chaotic state at kf0 ¼ 3:400� 10�4 s�1. On the basis of
the previous analysis, besides regions 1 and 2, there
should exist a third set of delay time corresponding to
the period-5 window for transitions from chaos to
periodicity. So we decreased the increment of K in
case 1, and we found this small set of delay time,
i.e., K=9.83 ·10)7–1.13 ·10)6 s)1 (region 5). For an
illustration of the transitions see Fig. 4. It is interesting

Fig. 3a, b. Reduced concentration of Ce(IV) z as a function
of reduced time s obtained from Eq. (2) for the transitions
from chaos to periodic oscillation by adjusting the delay time, s0,
with fixed feedback strength in Eq. (3). a K=3.78 ·10)6 s)1.
b K=7.56 ·10)6 s)1. Notations are the same as those in Fig. 2
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that only period-5 oscillations are obtained. Since the
magnitudes of K are quite small for the cases in region 5,
the period-5 oscillations obtained vary less than those in
regions 1 and 2. On the basis of these facts, we believe
that the no-delay feedback method for case 1 depends
strongly on the periodic windows in the bifurcation
diagram. Further clear proof supporting this conclusion
is that the periodic oscillations obtained in regions 5, 1,
and 2 include period-5 (Fig. 4), period-3 (Fig. 2a),
period-4 (the first stabilized periodic oscillations in
Fig. 2b), and period-2 (the last three stabilized periodic
oscillations in Fig. 2b) oscillations. They respectively
correspond to the windows of period-5, period-3,
period-4, and period-2 in the bifurcation diagram
(Fig. 1). As mentioned previously, these periodic win-
dows like traps pull the chaos into them.

It should be noted that the periodic oscillations ob-
tained in this way are not the unstable periodic orbits
embedded in the original chaotic attractor because kf
had a wide range of variation in the control process.
This is in accord with the results which were obtained
by the linear feedback loop through the function,
kf ¼ kf0 � 1þ C � z sð Þ½ � þ R, where C was called the self-
interacting strength and R the regulator by Song et al.
[6, 7, 8]. In fact, this feedback function is the same as the
no-delay feedback function used here; their C corre-
sponds to our K, and their R to our z(s0). Song et al.
focused on adjusting the parameter C with R being
zero or positive. Thus, in their control process only
positive or only negative feedback can exist depending
on whether C is positive or negative. By using the
scheme, they experimentally obtained period-1 and
period-2 oscillations in the ordinary BZ chaos [7] and
only period-1 in the new BZ chaos they discovered [8].
Also, they numerically got the steady state, period-1,
period-2, period-3, and period-4 in a four-variable BZ
chaotic model [6]. In the present studies, K remains
positive, and z(s0) is set to the middle value between the

maximum and the minimum of the oscillations, so po-
sitive and negative feedback may alternate in the control
process. The periodic oscillations obtained here include
period-2, period-3, period-4, and period-5.

The mechanism for case 1 does not seem to account
for the transitions in case 2 with time delay in the
feedback, especially as K is in region 3, where no part of
the variations of kf lies in periodic windows. By com-
parisons of the time series of z with those of kf for the
controlled cases in region 3, we find that one set of delay
time causes the first valley following the biggest peak in
the periodic oscillations of z corresponding to the right
side of the biggest peak of kf, and the other set to the left
side, indicating symmetry. An example of such a case
at K=3.78 ·10)6 s)1 with s0=0.005 and 0.018 is shown
in Fig. 5. Keeping in mind the analysis mentioned for
case 1, we propose that among the small-amplitude
oscillations that determine the whole oscillations, the
first valleys following the biggest peaks could be
the most important. So, we can describe a possible
mechanism for case 2 as follows. The controlled system
utilizes by the time delay the state information of the
biggest peak to make the first valley following this peak
correspond to suitable values of kf, then under this
condition periodic oscillations become stable. The fact

Fig. 4. Same as in Fig. 2 except that the values of K between
9.83·10)7 and 1.13·10)6 s)1 are illustrated to serve to control
chaos

Fig. 5a, b. Time traces for z and kf for the periodic oscillations
obtained from the case of K=3.78·10)6 s)1 in Fig. 3. a s0=0.005.
b s0=0.018. The arrows indicate the values of kf corresponding to
the first valley following the biggest peak in the oscillations of z
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that the symmetry of the set of the delay time is de-
stroyed for the controlled cases in region 4 may be
caused by the big periodic windows involved. Though a
possible mechanism for case 2 is given here, some pro-
blems, such as why different feedback strengths lead to
different ranges of delay time for controlling chaos and
why different delay times may produce different forms
of periodic oscillation, are still unsolved. Thus, more
detailed investigations are needed to account for
these phenomena. Like case 1, the periodic oscillations
obtained in case 2 are not the unstable periodic
orbits embedded in the original chaotic attractor,
because the values of the feedback function do not tend
to zero.

It should be noted that the mechanism for case 2 is
different from that of the Pyragas delayed feedback
method. The control signals generated by the Pyragas
feedback function K [ y(s)s0))y(s)] could tend to zero
when s0 is chosen to be equal to the period of an un-
stable orbit in a strange attractor, while those in case 2,
as mentioned earlier, have comparatively large ampli-
tudes as chaos is controlled. However, the mechanism
for case 2 may be related to those for external periodic
perturbation methods [22], since the control signals
generated by the feedback loop in case 2 are periodic
when chaos is controlled. The key point here is that the
controlled system itself generates such periodic signals
through a feedback loop with time delay.

Comparing cases 1 and 2, we think that the delayed
feedback method used in case 2 is more useful than the
no-delay one used in case 1, because it is not periodic-
window dependent. We also use the delayed feedback
method to the chaos at other values of kf in the bi-
furcation diagram in Fig. 1, and the transitions from
chaos to order are all successfully obtained. On the other
hand, the implications of the present results to real-
world chaotic systems, as stated in the Introduction, are
obvious, i.e., the complex chaotic system studied here
has the ability to self-regulate through a simple feedback
loop. In addition, the results have special implications in
signal processing in biological systems. Recent work has
indicated that feedback interactions could impart pre-
cision, robustness, and versatility to intercellular signals
during animal development [35]. Besides these ad-
vantages, we suppose that just like the two cases in this
work a biological unit may by a feedback loop provide
different signals, such as chaotic, aperiodic, and dif-
ferent-period periodic signals, to other biological units,
causing different biological effects.

Conclusion

Among the continuous-feedback methods used for
controlling chaos, we used a method whose feedback
function has the form K [ y(t)s))y0]. The main new point
in this work is that this simple linear feedback loop can
in two ways serve to eliminate the chaos in a complex BZ
reaction model, i.e., to turn chaotic into periodic oscil-
lations. One way is to modify the feedback strength K to

proper values as the delay time s equals zero, and the
other is to modify the delay time to adequate values at
fixed feedback strength. The two means imply, respec-
tively, a mechanism of self-regulation for the BZ reac-
tion. On the other hand, the feedback method used here,
where the reference value is a constant in time, needs
further testing in other chaotic systems. Its character-
istics and application range should be investigated in
detail.

From the experimental point of view, the model used
in this study is realistic enough to reproduce the ex-
perimentally observed behavior of the BZ reaction in a
continuous stirred tank reactor and an experimental
realization of the two methods used in this work is
simple. Thus, it would be interesting if our results can be
tested in real experiments.
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